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Received 8 June 1993 

Abstract. The relationship between two approaches to the study of non-equilibrium held 
thearies, namely quantum statistical mechanics and thermo field dynamics. is investigated. The 
formalism of superoperators auing in the Liouville space of density matrices is used to provide a 
detailed translation between the two approaches. Iris found that thenno field dynamics is exactly 
equivalent to a restricted version of quantum statistical mechanics, in which the initial density 
matrix is constrained to be Gaussian'. The dissipative permrbation theory developed within 
thenno field dynamics is translated into the language of statistical mechanics, and is found to 
be equivalent to that devised by the author using the statistid-mechanical closed-time-path 
method, except that the latter theory is not restricted to Gaussian initial states. 

1. Introduction 

Two apparently different mathematical structures have been developed over many years as 
means of estimating the real-time properties of thermalIy excited quantum field theories 
(see, for example, the review by Landsmann and van Weert 111). One is standard quantum 
statistical mechanics, exemplified by the formula Tr[pA(rl.. . t,)] for the expectation value 
of a Heiseoberg-picture operator A ,  which depends on several times tl . . . t,, in a state 
characterized at some initial time by the density operator p .  The second, known as thermo 
field dynamics [2,3], is most often presented as an axiomatic extension of ordinary quantum 
field theory, involving extra thermal degrees of freedom. Within statistical mechanics. a 
convenient method of undertaking perturbative calculations is afforded by the closed-time- 
path formalism [U]. As reviewed in section 2 below, this formalism is most easily 
constructed in terms of path integrals, and it turns out that two or more path integration 
variables are needed to represent each original quantum field. These extra variables are 
quite analogous to the thermal degrees of freedom introduced in thermo field dynamics, and 
the question naturally arises, to what extent the two mathematical structures are equivalent. 

In the view of tlie present author, quantum statistical mechanics is the correct approach 
to describing thermally excited states. If the axioms of thermo field dynamics turned out to 
have physical implications different from those of statistical mechanics, it would perhaps 
be necessary to defend this view in detail. What is shown in this paper, however, is that 
thermo field dynamics is precisely equivalent to a restricted version of statistical mechanics, 
in which the density operator p is Gaussian. Thus, it is this restriction, implied by the 
use of thermo field dynamics, which actually stands in need of defence. It seems to the 
author that this restriction is not defensible. For example, it excludes a11 density operators 
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of the form exp(-BH), where X is the Hamiltonian of any interacting field theory. Note, 
however, that in the Schrodinger picture one may consider a density operator which evolves 
with time, and this density operator is restricted to be Gaussian only at some initial time. 

The foregoing remarks may seem curious, in view of the well known fact that thermo 
field dynamics and the closed-time-path formalism yield identical Feynman rules for 
perturbation theory when applied to systems in thermal equilibrium [1,7]. In thermal 
equilibrium, however, the state of the system is essentially determined by the Hamiltonian 
which govems the real-time evolution and can, for example, be envisaged as emerging 
adiabatically from a non-interacting state (described by a Gaussian density operator) which 
existed in the remote past. Thus, the questions studied here are of practical importance only 
in non-equilibrium situations, where one needs to specify an initial state at a time which is 
not infinitely remote. The non-equilibrium version of the closed-timepath formalism [S,91 
involves three path-integration variables in an essential manner, whereas only two fields 
appear in the corresponding formalism of thermo field dynamics. The role of the third field 
is precisely to accommodate interaction terms in the initial density operator. 

The relationship between thermo field dynamics and quantum statistical mechanics has 
been investigated in the past. In the case of thermal equilibrium, it can be discussed in 
terms of C*-algebras 11, lo]. At a somewhat less sophisticated level, this relationship can 
be described in terms of superoperators acting in the Liouville space of density operators 
[ll-131, and the latter approach is adopted in the present work Indeed, Arimitsu and 
Umezawa 114,151 have appealed to the superoperator formalism to reconstruct the axioms 
of thermo field dynamics, though they did not investigate the consequences of doing so as 
exhaustively as is done here. 

The literature on thermo field dynamics being quite extensive, it is scarcely possible 
to do justice to the ingenuity which advocates of this theory have expended in developing 
their non-equilibrium formalism. For the purposes of this work, we regard the paper of 
Hardman et a[ [16] as representative, and our strategy will be to construct a detailed 
translation between their axiomatic formalism and the standard treatment of quantum 
statistical mechanics. In section 2 below, we briefly review the closed-time-path formalism, 
giving a formulation which, though unnecessarily general for all practical purposes, will 
facilitate our later discussions. Superoperators are introduced in section 3, where almost 
all of thermo field dynamics is reconstructed from statistical mechanics, without any need 
for special assumptions. The crucial restriction, known as a ‘thermal state condition’, 
which seems in practice to be an essential ingredient of thermo field dynamics, is discussed 
in section 4, where we establish the central result announced above, namely that this 
condition is equivalent to assuming a Gaussian density operator. In section 5, we discuss the 
description of dissipation in non-equilibrium theories, which has received more careful and 
widespread attention in the context of thermo field dynamics than within the closed-time- 
path formalism. We show in detail how the dissipative Feynman rules obtained by Hardman 
et nl can be translated into closed-timepath terms, and find that the result is equivalent to 
the perturbation theory developed within the latter context by the present author [9,17,18]. 
Finally, our conclusions are summarized and discussed in section 6. 

2. Quantum statistical mechanics and the closed-time-path formalism 

We consider a quantum field theory defined in terms of a collection of fields denoted 
collectively by the vector +(z, t ) .  At some initial time, say ti, the state of the system 
is described by a density operator p. All information about the behaviour of the system 
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between ti and a final time tf is contained, according to quantum statistical mechanics, in 
the generating functional for time-ordered Green functions, 

d3x j (z ,  t )  . +&, t )  11 (2.1) 

where T denotes latest-on-theleft time ordering and~the subscript H denotes an operator in 
the Heisenberg picture. The Heisenberg and Schrodmger pictures will be taken to coincide 
at time ti. When one attempts to evaluate the time-ordered Green functions in perturbation 
theory, one finds that anti-time-ordered propagators are required in addition to the time- 
ordered ones, so it becomes convenient to define a more general functional 

Z ( p ;  j1, j z )  = Tr d3x jz(z, t )  * &(z, i )  

where F is the anti-timeordering operator. For the purposes of .the present work, it will be 
useful to generalize this furtber to 

To the best of our knowledge, this generating functional has no particular physical meaning, 
though it obviously reduces to (2.1) if j z  = 0 and 

The Green functions generated by (2.3) may be evaluated perturbatively by means of 
the closed-time-path formalism, which is most easily constructed in terms of.path integrals 
[6].  We first transform to  the Schrodinger picture, denoting Schrodinger-picture operators 
by a subscript S. We obtain 

= p .  

k(pt. ~ 2 ; j t . j ~ )  = Tr[PI~slj2)U(4rty)pZU-t(fi.t~)~ki1)] (2.4) 

where 

J S ~ )  = Texp [-iL"di [H(+s,  t )  - J d3x j(x. t ) .  @s(=) I) 
3 s ~ )  = F e x p ( i ~ ' f d t ~ ( + s , t ) +  Jd3x j ( z , f ) . h ( z )  I} 

(2.5) 

(2.6) 

and 

To accommodate non-equilibrium situations, we allow for explicit time dependence in the 
Hamiltonian H(+,  t ) ,  which will naturally also depend on the canonical momenta II(z. t ) .  
though we suppress these arguments in the interest of notational economy. 
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Next, we suppose that both of the density operators pi are Hemitian and positive 
definite. They can therefore be written in the form 

and the Hermitian operators Hi can be regarded as generators of evolution in imaginary 
time, over intervals of length b. These‘operators are associated with the initial state of 
the system, and may in principle be quite unrelated to the Hamiltonian H which governs 
the subsequent evolution in real time.’ In practice, no doubt, the class of density operators 
which can usefully be represented in the form (2.8) may be quite restricted. 

Each of the six operators in (2.4) has a path-integral representation, obtained in the 
usual way by splitting the real and imaginary time intervals into infinitesimal segments and 
making repeated insertions of the identity operator, resolved as 

where the vectors 14) are.eigenvectors of 4s. The six sets of integration variables which 
arise in this way can be envisaged as residing on segments of a contour in the complex time 
plane, as depicted in figure 1. To undeaake perturbative calculations using 2, one would 
introduce independent soufce terms into the operators pt .  p z ,  U and U-’. Then the path 
integral representation of Z has the form 

If S(+) is the action of the original field theory, then the exponent in (2.10) contains a term 
is(&) for each time-ordered segment of the contour, -U(#Jj) for each anti-timeordered 
segment and -Si(&) for each imaginary time segment, where Si is the action associated 
with the ‘Hamiltonian’ Hi. The Feynman rules would involve a 6 x 6 matrix of propagators 
and six sets of interaction vertices. 

Figure 1. F’ath in the complex time plane corresponding io 
the generating functional (2.4). 

Calculations of this sort would be quite unmanageable, and are also quite unnecessary. 
Within the closed-time-path formalism, only two special cases of the generating functional 
(2.4) are of any importance. In non-equilibrium situations, one may take pz  = 1, in 
which case U and LI-l cancel out. Then 2 reduces to the form (2.2), which is the 
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generating functional for expectation values of products of the quantum fields &, with 
a variety of time orderings. There is an irreducible set of three path integration variables, 
residing on the contour of figure 2 [8]. In the case of thermal equilibrium, which 
implies that the Hamiltonian is time independent, one may choose p~ = exp(-apH) and 
pz = exp(-(1 - a ) p H ) ,  where now ,3 can be identified as the inverse temperature. Now 
U and U-' commute with ,@ and again cancel, so that one obtains the contour shown 
in figure 3. If one takes the limits ti -+ --M and tf + +w in an appropriate manner, 
contributions from the vertical segments of the contour can be shown to factor out of 2 [1,6], 
so that only the two real-time segments need be considered. The Green functions generated 
by j, with j, = 0 correspond to the time-ordered Green functions of the original quantum 
field. However, other Green functions appear 'only in intermediate stages of perturbative 
calculations and have no clear physical meaning unless (Y = 1, when we recover the contour 
of figure 2. 

t I, - iSi 

P i i r e  2. Path in the complex time plane corresponding 
to the generating functional (2.2). 

t I, - ip 

Figure 3. Path in the complex time plane corresponding 
to the generating functional (2.4) in the special case of 
a system in thermal equilibrium. 

3. Superoperators and thermo field dynamics 

For non-relativistic fields, which contain only positive frequencies, a perturbative formalism 
for dealing with non-equilibrium situations has been described in thermo field dynamics by 
H a r d "  etal [16] and further elaborated in several later papers [19-27.1. Our object is to 
reconstruct this formalism by using the language of superoperators in Liouville space [ I  1- 
151 to provide a detailed translation between thermo field dynamics and quantum statistical 
mechanics. 

Suppose that the Hilbert space 1-1 of states available to our system is spanned by a set 
of basis vectors In). An operator A in 31 can be written in the form E,,,, An,d In) (n'l and 
these operators themselves form a linear vector space, which is spanned by the basis In)(n'l. 
(These bases are depicted as beingpuntable only for notational simplicity. In particular, 
we do not envisage that the states of interest are restricted to a Fock subspace of 1-1. On the 
other hand, our discussion does not by any means aim at complete mathematical rigour;~the 
various restrictions, e.g. on boundedness of operators, which might be required for a fully 
rigorous construction will not be examined.) Thus, we may consider a linear mapping ket(.) 
from operators in 'H to vectors I.)) in a vector space, called the Liouville space, which we 
denote by 

ket(A) = ]A)) (3.1) 
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with the property 

ket(AA + pB)  = AlA)) + A B ) )  (3.2) 

for any two operators A and B and complex numbers r\. and p. An inner product on the 
Liouville space may be defined by 

((AIB)) = Tr[AtB] (3.3) 

and this induces an antilinear mapping bra(-) = ((-1. such that 

bra(AA + LAB) = A*((Al + p*((Bl. (3.4) 

Products of operators in X may now be represented in terms of superoperators in the 
Liouville space. Thus, we may define a linear mapping L(.), with L(A) = AL. and an 
antilinear mapping It(.), with R(A) = AR, by 

I & ) )  = ALlp)) (3.5) 

and 

IPA?)) = A R M ) .  (3.6) 

For OUT purposes, there is no particular distinction between the operators A and p in these 
definitions. The notation merely indicates that it will be convenient to represent density 
operators in X as vectors in the Liouville space and other operators as superoperators. We 
shall refer to AL and AR as left- and right-handed superoperators respectively. In view of 
the definition (3.3) of the inner product, we also have 

((Atpl = ( M A L  
((pAl = ( ( ~ 1 - 4 ~  

and it is straightfonvard to show that, for any two operators A and B,  

L(AB) = ALBL 
R(AB) = ARBR 
[AL, B R ]  = 0. 

(3.7) 
(3.8) 

(3.9) 
(3.10) 
(3.11) 

For theories which involve fermionic fields, these mappings may be generalized in such 
a way that left- and right-handed superoperators anticommute [13-151, but we shall deal 
only with bosonic fields in this work. Moreover, if Hermitian conjugation in the Liouville 
space is defined by Ip))t = ( (pi ,  ((PI? = I p ) )  and (Clp)))? = ((plCt, where C is any 
superoperator, then it is easily seen that (At)L = (AL)? and (At)R = (AR)t, and so 
Hermitian conjugation in X and in the Liouville space may be represented by the same 
symbol. The identity operator is unique: 

I L  = I R .  (3.12) 
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An antilinear operation tilde(-) (with the notation tilde(C) = E )  plays an important role 
in thermo field dynamics. In the language used here, it may be defined by 

where C is any superoperator. This implies 

(3.13) 
(3.14) 

(3.15) 
(3.16) 
(3.17) 
(3.18) 

where A is any operator in H and C and D are any superoperators. It is customary in thermo 
field dynamics to denote ow left-handed operators by A and the right-handed operators by A, 
but we do not adopt this convention here. Superoperators which have no L or R superscript 
are, in general, composed of sums and products of both left- and right-handed operators. 
The distinction between these superoperators and operators in X is one for which we have 
not found an economical notation, and will be indicated explicitly in the rare cases in which 
it is not evident from the context. 

The model field theory studied by Hardman eta1 [16] is defined by a Lagrangian density 
of the form 

L = i@Hb, t a  ~)z@H(z, i) - @&, t Om(-iY ~)@H(z, 0 - g w ( @ H h  t t ) .  

The canonical momentum conjugate to @H is 

(3.19) 

~ H ( z ,  I) = i@&, t f) (3.20) 

and the Hamiltonian is 

H = d3x [ n H ( Z ,  t)w(-iV, t )7 ,k~ ( I ,  t )  +gw(- inH@~,  f)] . (3.21) s 
For this model, we wish to obtain an expression in superoperator language for the generating 
functional (2.3), where we now identify 

j d ~ .  t )  9 $H(z, t )  = ~)@H(z.  t )  + j;(z, f)@&, t I). (3.22) 

(3.23) 

Since the adjoint of an anti-time-ordered expression is timeordered, since left-handed 
operators commute with right-handed ones, and in view of the antilinearity of R(-), we 
have 

-tR . 301 9 jd = SL(.il)J 0 2 )  

= T e x p [ i l a d t ( ~ l ( t ) . ~ ~ ( f ) + j ; ( t ) . ~ ~ ( t ) ) ]  (3.24) 
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where, for brevity, spatial arguments and integrations have been suppressed. Similarly, we 
find that time evolution of superoperators is described by the evolution operator 

t 

f i ( f j ,  t )  F UL(ti, t)UR(ti, t )  = Texp[-iJ(: fi(@i, @:, t‘)dt’] (3.25) 

where 

a(@;, @:. t )  = HW;, i )  - H(@!. 0.  (3.26) 

The Schrodinger-picture field operators may be expressed in terms of annihilation 
operators ak and ak t .  , with the usual commutation relation 

The corresponding superoperators are 

and, again taking account of the antilinearity of R(-), 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

with 

[a;, a$ = [a:, a!:] = S(~C - k’) (3.31) 

and all other commutators equal to zero. 
Within this canonical framework, perturbative calculations are accomplished using 

the interaction picture. Splitting the total Hamiltonian into an unperturbed part and an 
interaction, 

a(*, t )  = EiO(*. t )  + Gi”d@, t )  (3.32) 

we define interaction-picture superoperators AI@) by 

A&) = Uc’(t)AsUo(t) 

where 

(3.33) 

(3.34) 
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A convenient matrix notation, called the thermal doublet notation in thermo field dynamics, 
introduces a row vector $ = 
where 

and a column vector @, whose transpose is 

(3.35) 

(3.36) 

(3.37) 
(3.38) 

The fields thus defined have the equal-time commutation dation 

[*f(z, t ) ,  $f(z', t ) ]  = G'"S(z - z'). (3.39) 

However, the unperturbed evolution operator U&) used by Hardman etaf is neither unitary, 
nor expressible in the form (3.25) as the product of a left- and a right-handed operator. In 
that case, $(z,  t ) ,  for example, is not the adjoint of @j(z, t )  and none of the operators 
(3.35)-(3.38) is purely lef6or right-handed, except at t = ti. If we define a corresponding 
set of sources by 

(3.40) 
(3.41) 
(3.42) 
(3.43) 

then the lowest-order approximation to the generating functional (3.23) may be written as 

(3.44) 

The strategy adopted by Hardman et af [I61 is now to specify a priori the 
time dependence of the interaction-picture fields and then to construct the unperturbed 
Hamiltonian & which generates this time dependence. In terms of the time-dependent 
creation and annihilation operators 

~ O ( P I ,  P Z ; A , ~ Z )  = ( (~2lTexp[ i fdf  (j(f)tll,(t) + &@)J(O) ]  IQ)). 

this time dependence has the form 

a&) = CFl(t)h 

= imt) 
in which the real matrix C&) can be decomposed as 

(3.45) 

(3.46) 

(3.47) 
(3.48) 

(3.49) 
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The matrix E&) is composed of mode functions which describe single quasi-particle modes, 
and may be written as 

(3.50) 

where 

f,’(t) = exp -i dt’ (w&’) f i&)) . (3.51) 

The function K&) represents a quasi-particle decay width, while w&) is a renormalized 
frequency. In principle, this frequency may d e e r  from the one which appears in (3.19). 
hut we shall not be concerned with details of the renormalization process in this paper. 
The function n&) will turn out to represent the occupation number of the quasi-particle 
mode of momentum k, while b&) is arbitrary at this point. This prescription for the time 
dependence of the interaction-picture fjelds is designed so that the unperturbed propagator 
matrix ((,@1$f(z. t)&”(z‘, t ’ ) l p l ) )  has the same structure as the full propagator matrix. 
Consequently, the functions o&), K&) and n&) can be specified self-consistently by a 
suitable renormalization prescription, together with a knowledge of the initial state. 

and & which appear in (3.47) and (3.48) are 

The non-tilde operators ace related to the Schriidinger-picture creation and annihilation 
operators by 

[ l  1 

The time-independent operators 
respectively a column vector, whose transpose is (& tk), -I and a row vector ($ - &). 

& = b d l +  m ) a k  - (nM/bko)ak t R  (3.52) 

(3.53) .$! = ( l /bro)ap  - bwa: 
where bko and n~ denote bk(0) and nk(0) respectively. and the tilde operators are obtained 
from these by using (3.15H3.17). It is easily verified that these operators satisfy the 
commutation rule 

[&, &] = 6’”S(k - k‘) (3.54) 

although $ is not equal to 
satisfy the equal-time commutation relations 

in general. Correspondingly, the operators Q&) and &(t) 

[ar(t),EL(t)] = 6’”6(k-k’). (3.55) 

It is straightforward to find that the Hamiltonian which generates this time dependence is 

&?h, t )  = / d3kii,(0&(0a&) 

= 1 d3x &(z, t)H(-iV, t )$~(z,  t )  (3.56) 

where 

(3.57) 
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and H(-iV, t )  is found by making the replacement k + -iV in this expression. 
At this point, we have been able to reproduce most of the formalism constructed by 

Hardman et ol [16] without any need for special assumptions. Thus, if Green functions 
generated by (3.23) can be calculated within the superoperator formalism, they should be 
precisely equivalent to those generated by (2.3). In particular, the functional Z(p1p2;  j,) = 
2(pl, p z ;  j1 , 0). which coincides with (2.1), generates the physical expectation values that 
are of interest in quantum statistical mechanics. However, the perturbative evaluation of 
these Green functions, using (3.44) as the unperturbed theory, is accomplished in thermo 
field dynamics by introducing a crucial assumption, known as the thermal state condition, 
which we discuss in the following section. In all presentations of thermo field dynamics 
known to the present author, this assumption is introduced as a fundamental postulate. As 
we shall see, it restricts the class of initial states of the system which can be dealt with. This 
restriction distinguishes thermo field dynamics proper from the more general superoperator 
formalism we have studied up to now, and therefore also from quantum statistical mechanics. 

4. Thermal states 

The aim of thermo field dynamics is to offer a canonical, operator-based treatment of thermal 
field theory. In particular, it seeks to apply Wick's theorem to develop a perturbation series 
similar to that used to study scattering processes in the vacuum. For this reason, the vectors 
Ipl)) and ((ml are known in therm0 field dynamics as 'thermal vacua'-a term which we 
avoid as being inappropriate to a description of highly excited thermal states. First of all, 
it is assumed that 

~ ~ 

I P I ) ) - =  I P I ) )  and ((&I-= ((Pzl. (4.1) 

According to (3.13). this implies that the density operators p1 and m are Hermitian, as they 
should be. The crucial feature is that normal-ordered products of the operators 5; and $; 

between ((ml and Ipl)). To this end, one imposes the coditions 

(in which Ck 8 and -8 stand to the left of & and &) must have vanishing matrix elements 

(4.2) 

(4.3) 

Assuming that ((&I)) = Tr[pzpI] = 1, a consequence of these conditions, together with 
(3.47H3.51) is that 

( (aln:(r)a~,( t ) lp1))  = - k')ndt) (4.4) 

and it is in this sense that nk(t) are occupation numbers for the quasiparticle modes described 
by h(z, 0 .  

The restrictions which (4.2) and (4.3) place on the density operators is easily determined 
from (3.52) and (3.53). which relate the B operators to a i  and ut, together with the mapping 
rules (3.7) and (3.8). Translating (4.2). we find 

a m  = e -"(k)plaa (4.5) 
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where 

e-n(k) = nm 
b;,,(l+ 4 

and the adjoint of the same equation. This implies that p1 is of the form 

PI = J% exp [- / d3k u l y 1 ( k ) ~ , ]  

where NI is a normalizing constant. Similarly, (4.3) implies 

PZ = NZ exp [ - / d3k q ! ~ ( W a k ]  

with 

e-n(k) = bZ m' (4.9) 

According to the discussion of section 2, the initial state of the system is specified by the 
density operator 

p = PI@ = N exp [ - / d3k aly(k)a,] (4.10) 

where JV = NIN; and 

(4.11) 

and we see that this is independent of the arbitrary quantity bm. Thus, the physical 
expectation. values generated by (2.1) should also be independent of bm. as is confirmed 
by calculations within thermo field dynamics [16]. Evidently, a special choice [I61 of this 
quantity, namely 

(4.12) 

gives p1 = p' and pz = pl*. 

occupation numbers nm. In particular, the choice 

nm = t e a a b  - 11-l 

In thermo field dynamics, the initial state will be specified by a choice of the initial 

(4.13) 

corresponding to the Bose-Einstein distribution for an ideal gas, implies 

(4.14) 

which is the equilibrium density operator for such a gas. Clearly, more general choices 
are possible, but we see that thermo field dynamics permits only Gaussian initial density 
operators. These correspond to the canonical ensemble for a gas of particles which do 
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not interact, but have an arbitrary dispersion relation, specified by y ( k ) .  This explains 
why, even in the non-equilibrium formalism, only two copies of the original quantum fields 
appear in thermo field dynamics, compared'with the three copies which are required in the 
closed-timepath formalism 181. In the latter formalism, the third copy, .which inhabits the 
imaginary-time segment of the contour of figure 2, is required to describe the initial density 
operator. When this is Gaussian, the information it contains can be completely absorbed 
in the unperturbed real-time propagators. In the case of a system in thermal equilibrium, it 
makes sense to take the limits t, + -CO and tf -+ +CO. In that case, the equilibrium state of 
the interacting system can be treated as growing adiabatically from that of a non-interacting 
system, represented by a Gaussian density operator. Then, as is well known [1,7], the two 
formalisms become equivalent. 

Having specified the initial state, it is still necessary to construct a perturbation theory 
for the generating functional (3.23). starting from its unperturbed version (3.44). This 
generating functional may be expressed in the interaction picture as 

4 
.&I,Pz:~I,~z) = ((pzlSTexp [ - i l  dt ( f i d M 0 ,  t )  - j(t)l/rr(t) - &(t)J( t ) )]  1%)) 

(4.15) 

where 

(4.16) 

This expression does not lead directly to a perturbation expansion of the form used in vacuum 
field theory because one cannot appeal to the Cell-Mann-Low theorem and vacuum stability 
to eliminate 5. As emphasized by Evans ef al[231, it is perfectly possible to evaluate (4.15) 
perturbatively as it stands, but the extra terms arising from $ have to be included. We see 
that these extra terms correspond, in the closed-time-path formalism, to the extra real-time 
segments of the contour shown in figure 1 and, correspondingly, to the extra integration 
variables in (2.10). As explained above, the role of the imaginary-time segments and their 
integration variables is invisible in (4.15) because of the Gaussian nature of the density 
operators. 

It turns out that these extra complications can be eliminated by making a special choice 
for the arbitrary function b&), namely 

bk(t) = 1. (4.17) 

In particular, this means that bko = 1, or to 01 = 1 in (4.13, so that f i  is the identity 
operator, and 2 reduces to the form (2.2) associated with the contour of figure 2. With 
this choice of b&), it is not difficult to show [21,221 that both 2% aid Hinr annihilate 
((ai, provided that they are normal-ordered with respect to the 6 operators. Thus we have 
((&I? = ((pzl and a perturbation series of the standard form can be developed. 

We are now able to see that thermo field dynamics is completely equivalent to quantum 
statistical mechanics and, indeed, to the closed-time-path formalism, except that it deals 
only with those situations described by Gaussian initial density matrices. However, this 
equivalence exists at the level of the complete generating functional (2.3) or (3.23). The 
final point we wish to examine is whether the perturbation series constructed in thermo 
field dynamics is equivalent to an approximation scheme which can also be applied in the 
closed-timepath formalism, and this is discussed in the next section. 
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5. Dissipative perturbation theory 

If a system is disturbed slightly from an equilibrium state, and'subsequently left undisturbed, 
it will decay back towards equilibrium, provided that there are interactions which permit 
the necessary redistribution of energy. Consequently, the elementary excitations of the 
equilibrium state, or quasi-particles, may be expected to have decaying modes. For a 
system in a non-equilibrium state, the evolution of the state with time is govemed by 
similar dissipative processes, and it is essential to have an approximation scheme which takes 
adequate account of these. Conventional perturbation theory, which takes a non-interacting 
system as its lowest-order approximation, is unable to do this, and this is a problem to 
which Hardman et ai [16], following earlier authors [14,15, 24-27], have rightly given 
close attention. (We do not subscribe to the qualitative explanation of dissipation offered by 
these authors, in terms of unobserved 'tilde particles' canying negative energy, which seems 
to us to misinterpret the superoperator formalism, but we do not consider it worthwhile to 
quibble about words.) 

In the 'semi-free' Hamiltonian (3.56) with (3.57), dissipative effects appear in the terms 
involving the quasi-particle decay widths K&) and the time derivative of the occupation 
numbers lir(t). We see that the manix coefficients of these quantities have off-diagonal 
elements which couple @' and $' with @ and $'. Now, any field theory defined initially 
in terms of quantum fields acting in a Hilbert space 1.I will translate into a Liouville- 
space theory with a Hamiltonian of the form (3.26), where no such couplings appear. 
Consequently, the semi-free Hamiltonian does not correspond to any bona jide quantum 
field theory with a Hilbert spaceof states available to it. It must be emphasized, however, 
that the off-diagonal terms in HO by no means constitute an arbitrary mutilation of the 
original theory. Their role is to mimic, in the unperturbed self-energy, the absorptive parts 
of higher-order contributions to the full self-energy, and a well conceived renormalization 
scheme, of the kind considered by the authors cited above, will ensure that they do so with 
reasonable fidelity. 

It might seem, then, that therm0 field dynamics is able to give a description of dissipative 
processes which is not available in other approaches to thermal field theory. This is not so, 
however. The present author has developed an approximation scheme within the closed- 
time-path formalism which achieves the same end [9,17,18], and we wish to show here 
that the two schemes are equivalent (except that the closed-timepath method encompasses 
more general initial states, as discussed above). Indeed, the path integral form of Z shown 
in (2.10) shares with the Hamiltonian (3.26) the feature that the total action contains no 
terms coupling the various sets of integration variables. However, the effective action (the 
Legendre transform of -iln Z) does contain such coupling terms, again arising from higher- 
order contributions to the self-energy, and an unperturbed action which mimics these can 
be used to develop a dissipative perturbation theory. 

We use the mapping rules (3.5X3.8) to translate the unperturbed generating functional 
(3.44) into the form discussed in section 2. It will be convenient to, work in the Schrodinger 
picture and, if the timeordered operator in (3.44) is denoted by 3&, jz), we have 

% = U ~ ' ( t ~ ) ) T e x p [ - i ~ d t ( ~ ~ ( @ ~ , t ) - - ( t ) @ s - ~ s J ( t ) ) ]  (5.1) 

where U&) was defined in (3.34). We consider only the case b&) = 1, so that U,,-' can 
be dropped from (5.1) and the last term of (3.57) vanishes. The density operator pz is now 
just the identity. According to (3.3), we have 

.ko(~i,Zj~.jd =Tr[Rt0i,tr)pi] (5.2) 
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where R(q, tf) is defined by 

((R(ti,tf)l = ( ( T I T e x p [ - i ~ " d t ( ~ ~ ( $ ~ , i l  - ~ ( W S  - & J ( f ) ) ] .  

w, tf) = jw,, w 2  I$lA R($lt. pa, 2 ,  tf)($d. 

s 

(5.3) 

This operator is difficult to write down in terms of field operators, but we shall derive 
a path-integral representation for it. Define the kernel R($1,, $2, 2 ,  tf) by 

(5.4) 

Then we have 

& ( ~ i , ~ j i , j z )  = 'o$i2)$z'2*(tlri,$zlrti,rf)(pzI~1I$i). (5.5) 

Now, using (3.35H3.38) in (3.56), we find 

Strictly, this expression should be normal-ordered so that it annihilates ((TI. However, since 
it is quadratic in the fields, normal ordering introduces only an additive constant, which can 
be taken into account by the normalization condition Z&, Z; 0.0) = 1, and need not be 
considered explicitly. 

The standard heuristic procedure can now be employed to derive the path-integral 
representation. In (5.3). operators at the latest times act first on ((TI and we build up 
R(ti, t f )  by moving the earlier time backwards from tf to tj in infinitesimal steps At. At 
each step, R(t - At, tf) involves operators acting on R(t, tf) both from the left and from 
the right. Schematically, we have 

R(t - At ,  tf) = R(t, tf) + iAt  [H"*$t$R(t, t f )  + H'&$R(t, tf)$t + . . .] . (5.7) 

Thus, we build the kernel R($~,-A,, $z,-A,. t - At, k) by acting on the left and right 
of (5.7) with two copies of the identity operator (2.9) and estimating the resulting matrix 
elements in the usual way. The result we obtain is 

~ * ( $ l ,  $2, ti, t f )  = z)$-l(t) ~ $ ; ( t )  ~1/12(t)  ~ ~ + l ( t )  eisoc*.j) (5.8) 

where 

+ $lHZ'$l + $;Hu$2 + j l  . $1 + j z  . $21 . (5.9) 

The complete path-integral form of &(p1, Z; j1, j 2 )  is obtained by constructing the path- 
integral representation of ($zlp11$1) in (5.5). This adds to is0 a term of the form -S~(p3), 
where SE is the Euclidean action associated with PI. We described in [9,17,18] how an 
analogous unperturbed action may be constructed within the closed-time-path formalism for 
a relativistic scalar field (known as a 'type 2' field in the thermo field dynamics literature). 
For the non-relativistic theory considered by Hardman et al. we have checked that the same 
construction leads to a real-time action of exactly the form of (5.9). with HP" given by 
(3.57), but we shall not reproduce the details here. 

It is not hard to see what would have happened if we had not made the choice &(r) = 1. 
The non-trivial density operator pz and the factor U;' in (5.1) would have led to an extra 
component in R corresponding to the contour segments labelled by p2. U-' and U in 
figure 1. If bk(0) = 1, then the length of the p2 segment would be zero, but the contributions 
from U and U-' cancel only if b&) = 1 at later times also. 
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6. Discussion 

It frequently appears from the literature that thermo field dynamics is thought by its 
proponents to offer a more general description of thermal phenomena than quantum statistical 
mechanics, although categorical assertions to this effect are hard to find. Certainly, Evans 
et al [23] claim that thermo field dynamics is more general than the closed-timepath 
formalism, to the extent that it involves the arbitrary function b&) or, more restrictively, 
the parameter a introduced in (4.12), while Henning and Umezawa [28] suggest that the 
closed-time-path method is unsuited to @e analysis of non-equilibrium phenomena. 

In this work, we have used the superoperator formalism to provide a detailed translation 
between thermo field dynamics and statistical mechanics, and this shows that in fact the 
reverse is true. In fact, every feature of thermo field dynamics can be expressed in 
closed-time-path terms. Contrary to the assertion of Evans et al,  that the a: degree of 
freedom exists in the closed-time-path formalism only when it is applied to equilibrium 
situations, we have shown that it and, indeed, the more general freedom represented by 
b&), correspond quite generally to contours of the kind shown in figure 1. This, however, 
is a trivial detail. By and large, it is agreed on all sides that Green functions associated with 
fields of index 1 contain all the physical information, while fields of index 2 (or greater) 
have a direct physical interpretation only when they are associated with the contour of 
figure 2. (Somewhat exceptionally, Umezawa [29] has speculated that it might be possible 
to detect ‘thermal quanta’ associated with the tilde fields of thermo field dynamics which, 
presumably, would be different from normal physical particles. Such speculations seem to 
the present author to be quite misguided.) This being so, the freedom to choose different 
time paths, or different functions b&) is a purely mathematical one. Except in thermal 
equilibrium, indeed, any choice other than the contour of figure 7. (b&) = 1) leads to 
unnecessary mathematical complications, so the generality is neither physically meaningful 
nor mathematically advantageous. 

Actually, there is a second choice of bk, corresponding to a = 0 in (4.12) which, as 
discussed by Evans et al [23], has  the same advantages as bk = 1 when the Schrodinger 
and Heisenberg pictures are taken to coincide at tf rather than at q as we have done. 
This choice corresponds to the time-reversed version of figure 2, with the imaginary-time 
segment at tr. The point here is that the density operators are time-independent functions of 
the Schrodinger-picture field operators. Thus, in the time-reversed situation, one specifies 
what the state of the system will be at the time rf, which is later than all the other times of 
interest. While this anti-causal procedure is possible mathematically, it would seem to have 
limited physical applications and, as remarked by Evans et al, has received little attention. 

A much more important conclusion of this work is that thermo field dynamics deals 
only with thermal states which are initially described by Gaussian density matrices. In 
thermal equilibrium, this is of no importance. since the equilibrium state of an interacting 
system can be represented as growing adiabatically from that of a non-interacting system 
in the remote past. In non-equilibrium situations, however, this is a highly restrictive 
feature of thermo field dynamics, since one generally wants to study the evolution of the 
system at times shortly after the initial state was set up. In particular, several authors 
have suggested that thermo field dynamics is particularly suitable for studying the early 
universe [ 16,21,27,30]. We disagree with this view, on the grounds that the early universe 
possesses no remote past! In the closed-time-path formalism, by contrast, the class of initial 
density matrices is restricted in principle only by considerations such as renormalizability. 
In practice, though, it is probably difficult to deal with initial states which differ greatly 
from an equilibrium state. 
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Quite probably, the postulates of thermo field dynamics could be modified to 
accommodate more general states, for example, by translating the density  operator into 
a superoperator. This would presumably entail promoting the thermal doublet to a thermal 
triplet of fields, in precise analogy to those of the closed-timepath formalism. Alternatively, 
one might allow the operators (3.52), (3.53) to become nonlinear functions of the original 
fields. The nonlinearity would, presumably, have to be treated perturbatively, leading 
to extra terms in the perturbation series, which must reproduce the corresponding terms 
obtained in the closed-timepath method. Indeed, we see no point in pursuing these 
possibilities, since the resulting theory would necessarily be equivalent to the path-integral 
formalism which already exists. Moreover, it is apparently difficult to construct a non- 
 equilibrium theory of relativistic (‘type 2’) fields within thermo field dynamics, except in 
the case of stationary states [16,23], whereas this presents no difficulty of principle in the 
closed-time-path approach [S, 9,17,18]. 

Finally, we remark that there is a mathematical sense in which both thermo 
field dynamics and the closed-time-path formalism are more general than quantum 
statistical mechanics. Thus, in both approaches, it seems fairly natural to consider 
expressions of the form Tr [ p l A l ( f l ) .  . . A,(r.)pzA.+l(t,+l). . . A N ( ~ N ) ] ,  whereas quantum 
statistical mechanics assigns physical meaning only to expectation values of the form 
Tr [ p A l ( f , ) .  . . A N ( ~ N ) ] .  Indeed, an indefinite multiplicity of density operators might be 
considered in terms of closed-timepaths, though not, in any natural way, in thermo field 
dynamics. There is some temptation to speculate on a generalization of quantum theory in 
which these more general ‘expectation values’ would acquire a physical significance. In 
such a theory, the right- and left-handed superoperators might have independent physical 
meanings, rather than merely giving a redundant representation of the single set of original 
operators. There are hints of such speculation both in the work of Crawford [I I] and in the 
thermo field dynamics literature, but we know of no physical motivation for them. 

~ ~ 
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